
Analysis, Verification, and Management Toolsuite for
Cyber-Physical Applications on Time-Varying Networks

(Work in Progress)

William Emfinger,Gabor Karsai,Abhishek Dubey,Aniruddha Gokhale
Institute for Software-Integrated Systems

Vanderbilt University
Nashville, TN 37235

{emfinger,gabor,dabhishe,gokhale}@isis.vanderbilt.edu

ABSTRACT
Cyber-Physical Systems (CPS) are increasingly utilizing ad-
vances in wireless mesh networking among computing nodes
to facilitate communication and control for distributed ap-
plications. Factors such as interference or node mobility
cause such wireless networks to experience changes in both
topology and link capacities. These dynamic networks pose
a reliability concern for high-criticality or mixed-criticality
systems which require strict guarantees about system per-
formance and robustness prior to deployment. To address
the design- and run-time verification and reliability concerns
created by these dynamic networks, we are developing an
integrated modeling, analysis, and run-time toolsuite which
provides (1) network profiles that model the dynamics of
system network resources and application network require-
ments over time, (2) design-time verification of application
performance on dynamic networks, and (3) management of
the CPS network resources during run-time. In this paper
we present the foundations for the analysis of dynamic net-
works and show experimental validations of this analysis.
We conclude with a focus on future work and applications
to the field.

Keywords
Verification, QoS, CPS, cyber-physical, networks, managed
distributed systems.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Reliability

General Terms
Verification1

1
Permission to make digital or hard copies of all or part of this work for per-

sonal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

1. INTRODUCTION
Many CPS applications require networking of some form in
order for the system to function nominally. This networking
often performs a key role in the system, such as facilitating
the communication and control of distributed sensors and
control systems. Traditionally, these networks of CPS have
been both isolated from external influences and predefined
at system design-time. This isolation and pre-determination
creates a static network with respect to both the topology
of the network and the capacity of each network link. More
recently however, CPS have become less isolated and more
dynamic by utilizing heterogeneous and wireless networks
and incorporating mobility.

Some wireless mobile CPS networks, such as the network
between a cluster of satellites orbiting Earth, vary period-
ically with respect to time, e.g. according to the cluster’s
orbital period. For such networks, the physical dynamics of
the nodes in the cluster are well understood and predictable,
therefore the network dynamics can be fairly predictable as
well. For such predictable or periodic dynamic networks, the
use of worst-case network performance for analysis and con-
straint verification wastes the network resources over much
of the lifecycle of the system. Integrating the physical dy-
namics of the network into the modeling and analysis tools
improves the performance of the systems without degrading
its reliability.

However, our current design tools do not incorporate the
physical dynamics of the network for analysis of network
constraints on the applications. Towards these goals, we
have developed time-varying network traffic models that can
be specified by the application developer and analyzed against
the system network profiles, specified as [time, data] series.
By analyzing these profiles, we can determine exactly how
the system will transfer the application data. Analysis of
this transmitted data profile vs. the application data profile
provides the developer with information about both the min-
imum buffer required for application communication with-
out loss of information and the maximum buffer delay in
communication caused by the network. Metrics such as
these allow the developer to guarantee in design time that
the application will not exceed its memory and latency con-
straints at run-time.

2. RELATED WORK



Since computing networks are so prevalent, many tools exist
to analyze system network behavior, either through simula-
tion or abstract modeling. OMNET++[1] accurately sim-
ulates the network traffic as it passes through the network
layers. The INETMANET framework, built on top of OM-
NET++, supports the simulation of network traffic over dy-
namic wireless links for gathering performance data about
applications on the network. Because it focuses on actually
simulating the network, OMNET++ is less useful for pro-
viding design-time guarantees about the performance, and
it becomes impractical to use for large, complex, cyber-
physical systems that host many applications distributed
throughout the nodes.

Network Calculus[2], on the other hand, focuses on abstract-
ing the network traffic and the computing nodes as arrival
curves and traffic shapers. The arrival curves and service
curves model the amount of data generated or serviced in
a given window of time and are bounded by maximum and
minimum arrival and service curves. These bounds provide
the requisite information needed to make design-time guar-
antees about worst-case application performance on the net-
work, given that both the application traffic profile and the
system’s network performance are deterministic. These de-
terministic constraints can be relaxed so that the arrival
and service curves can be probabilistic, causing the bounds
on the performance to be probabilistic as well[3]. Because
Network Calculus deals with either deterministic worst-case
application performance on a static network or stochastic
application performance on a dynamic network, system de-
signers and application designers under-utilize the network
resources of systems which require strict design-time guar-
antees about application performance.

Network Calculus’ principles and the underlying mathemat-
ics of max-plus calculus were adapted in [4] into Real-Time
Calculus for modeling and analyzing computational require-
ments and resources in real-time systems. Using the con-
cept of capacity request and delivery curves adapted from
Network Calculus, bounds on the computation time and
scheduling could be derived along with the ability to test
schedulability of the applications on the real-time system.

Finally, there do exist different protocols and communica-
tions paradigms which support run-time control of appli-
cation network traffic, such as the Quality of Service (QoS)
control mechanisms present in many implementations of OMG’s
Data Distribution Service (DDS) standard[5][6]. However,
often the mechanisms available for controlling the QoS pa-
rameters of a given data stream are complex, interacting
mechanisms which may be difficult for the application de-
veloper to understand and therefore are also not amenable
to modeling and analysis at design time. Additionally, many
of the available interaction paradigms either do not support
design time QoS analysis and run-time monitoring and con-
trol or the supported QoS analysis and control interfaces are
only informally specified.

3. CONTRIBUTIONS
To model the network capability of the system and the appli-
cation traffic patterns, we have developed a network mod-
eling paradigm similar to Network Calculus’ traffic arrival
curves and traffic shaper service curves.

Similarly to Network Calculus’ arrival curves and service
curves, our network profiles model how the network per-
formance or application traffic generation changes with re-
spect to time. Whereas Network Calculus’ modeling trans-
forms application data profiles and network service profiles
into min and max curves for data received vs. size of time-
window, our models take a simpler, deterministic approach
which models exactly the data generated by the application
and the data which could be sent through the network, al-
lowing our performance metrics to be more precise. Specif-
ically, the bandwidth that the network provides on a given
communication link is specified as a time series of scalar
bandwidth values. Here, bandwidth is defined as data rate,
i.e. bits per second, over some averaging interval. This
bandwidth profile can then be time-integrated to determine
the maximum amount of data throughput the network link
could provide over a given time. The bandwidth profile for
the application traffic similarly can be time-integrated to
determine the amount of data that the application attempts
to send on the network link as a function of time.

Having time-integrated the bandwidth profiles to obtain data
vs. time profiles that the application requires and that the
system provides, we can use convolution (⊗) on these two
profiles to obtain the transmitted link data profile as a func-
tion of discrete time. The convolution we define on these
profiles borrows concepts from the min-plus calculus used in
Network Calculus, but does not use a sliding-window and
instead takes the transformed minimum of the profiles. For
a given application data generation profile, r[t], and a given
system link capacity profile p[t], where t ∈ N, the link trans-
mitted data profile l[t] is given by the convolution Equa-
tion 1. The difference (p[t−1]−l[t−1]) represents the differ-
ence between the amount of data that has been transmitted
on the link (l[t − 1]) and the data that the link could have
transmitted at full utilization (p[t − 1]). As demonstrated
by the convolution equation, ∀t : l[t] ≤ r[t], which is the re-
lation that, without lower-layer reliable transport, the link
cannot transmit more application data for the application
than the application requests as there will be packetization
and communication header overhead as well.

y = l[t] = (r ⊗ p)[t]
= min(r[t], p[t]− (p[t− 1]− l[t− 1]))

(1)

buffer = sup{r[t]− l[t] : t ∈ N} (2)

delay = sup{l−1[y]− r−1[y] : y ∈ N} (3)

Equation 2 and Equation 3 calculate, using l[t], r[t], and the
inverse function l−1[y], the minimum buffer size required
for the application and the maximum buffering delay expe-
rienced by application data, respectively. Figure 1 depicts
the convolution operation and shows a schematic represen-
tation of the maximum buffer delay and the minimum buffer
size. As can be seen in the figure, the maximum horizontal
distance between the required profile and the link profile is
equal to the maximum buffer delay, while the maximum ver-
tical distance is equal to the minimum buffer size required
for loss-less transmission of data on the link.

To verify the validity of these operations and metrics, we



Figure 1: Representative example demonstrating convolu-
tion of the data vs. time profiles that the application re-
quires and that the system provides. The resultant data
vs. time profile describes the data that the system actually
transmitted on the link.

Figure 2: Diagram of the testbed network and setup. The
CPS nodes are connected to each other, but their network
communication is routed through the traffic shaping and
delay node.

Figure 3: Bandwidth profiles for both what the application
requires and what the system provides as a function of time.

developed network measurement code which generated data
for the network according to the supplied profile. This code
executed on a private network testbed of nodes connected
to each other through a gigabit Ethernet switch. We im-
plemented the network link profile using a traffic shaping

Figure 4: These data vs time profiles are the time-
integration of the bandwidth vs time profiles from Figure 3.
The resultant Link profile represents the convolution of the
two data profiles. N.B. this plot shows the full data vs
time profiles; Figure 5 magnifies this plot for visibility of
the buffer and delay.

node on this network through which all the application traf-
fic flowed. On this node we ran dummynet[7], which can be
configured to control bandwidth, latency, and packet loss on
a per-link basis. For these experiments, we configured the
traffic shaping node to control the bandwidth of the speci-
fied link according to the system provided network profile.
This testbed setup is shown in Figure 2.

Using this testbed system and performance code, we were
able to measure the effective bandwidth over time to ensure
that, at all times, the resultant traffic profile matched the
predicted traffic profile. In addition, the sending and receiv-
ing time for each message was recorded to allow calculation
of the buffer delay. Finally, by analyzing the measured data
profiles in the same way that we analyzed the predicted data
profiles, we can calculate the minimum buffer size required
for the application on the network.

Figure 5: The maximum buffer delay and minimum net-
work buffer required are shown zoomed-in for clarity from
Figure 4. The vertical line shows the minimum buffer re-
quired, while the horizontal line shows the maximum buffer
delay incurred.

Time-integrating the bandwidth profile in Figure 3, we ob-
tain the data profiles (Figure 4). These data profiles are
convolved as in Equation 1 to produce the link data profile.



From the link data profile and the application required pro-
file we can predict the delay and buffer bounds, which are
zoomed-in for display in Figure 5. For the sample profile,
the predicted versus measured maximum buffer delay, time
of delay, and minimum buffer size are shown in Table 1.
As the table shows, the measurements from the experiments
closely correlate with the model’s predictions, with the pre-
dictions erring on the conservative side.

Table 1: Network utilization calculations and measured re-
sults using UDP over IPv6.

Predicted Measured (µ, σ)
Buffer Delay (s) 0.0625 (0.06003 , 0.00029)

Time of Delay (s) 3.0 (2.90547 , 0.00025)
Buffer Size (bytes) 8000 (7722.59 , 36.94)

4. FUTURE WORK
This work’s goal is to provide a design-time analysis of dy-
namic networks for verification of application performance.
Towards that goal, we have shown an analyzable network
model for deterministic time-varying networks. We have
shown the validity of this model and its analysis through
experimental results on a time-varying network. More work
is needed however to extend this model for deployment in a
run-time system.

To extend this analysis into the run-time system we are mod-
ifying the component connector layer of the middleware to
measure the run-time performance of the application. In
this layer, the application’s network traffic can be monitored
and controlled. The monitoring of the network traffic in this
layer allows us to ensure that each application gets the net-
work traffic profile it was guaranteed while also providing
the developer with a common interface for controlling the
QoS on the network regardless of the interaction pattern
being used. Conversely, the control of the network traffic
further allows us to ensure that any application’s attempts
to exceed its traffic profile limits do not affect another ap-
plication’s utilization of the network.

A few of the key features on which we are currently working
include

• Extending the network profile modeling towards dy-
namic networks whose evolution may not be completely
known at design time

• Determining the scalability of the analysis for larger
networks

• Performing constraints analysis between the applica-
tions and the network links to determine if applications
can execute on the platform successfully

• Integrating schedulability analysis to provide informa-
tion to inadmissible applications about how they need
to reschedule their network traffic for admission to the
network

• Business logic modeling to generate the application
traffic profiles

• Run-time network traffic management code integrated
into the middleware for providing the network queues,
monitoring bandwidth and delay, and ensuring confor-
mance of applications to their traffic profiles

• Extending the run-time management to include dy-

namic network load balancing and traffic profile reschedul-
ing based on availability of the network

5. CONCLUSIONS
In our preliminary work, we have integrated dynamic net-
work analysis into CPS application design, analysis, and de-
velopment tools. For systems which communicate over a dy-
namic network, such as a cluster of satellites orbiting a celes-
tial body, the network analysis and prediction at design-time
typically focuses on worst-case scenarios and worst-case per-
formance. This focus on worst-case performance of the net-
work is a useful method for providing guarantees about ap-
plication and network performance, but it may waste avail-
able network resources during periods of good connectivity.
To minimize the wasted system resources involved with the
varying network performance, we have begun developing a
network analysis model which takes into account the time-
variance of the network with the goal of predicting how both
the application and the system perform over time. We have
shown that in simple deterministic cases, the network model
correctly predicts useful metrics like delay and buffer bounds
using application test code executing on a cluster testbed.
Our goals are now to extend the model to allow for better
guarantees in more variable networks, to accurately gener-
ate the system and application profiles at design time for
analysis, and to provide integrated Quality-of-Service con-
trol within the application communications layer of the run-
time infrastructure. Using these tools, we hope that cyber-
physical systems application developers and system integra-
tors will be able to not only have greater confidence in sys-
tem functionality and stability, but also gain more run-time
performance from the system and its applications.

Acknowledgments: The DARPA System F6 Program and
the National Science Foundation (CNS-1035655) supported
this work. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not reflect the views of DARPA or NSF.

6. REFERENCES
[1] A. Varga and R. Hornig, “An overview of the omnet++

simulation environment,” in Simutools ’08: Proceedings
of the 1st international conference on Simulation tools
and techniques for communications, networks and
systems & workshops, (ICST, Brussels, Belgium,
Belgium), pp. 1–10, ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering), 2008.

[2] J.-Y. Le Boudec and P. Thiran, Network Calculus: A
Theory of Deterministic Queuing Systems for the
Internet. Berlin, Heidelberg: Springer-Verlag, 2001.

[3] A. Burchard, J. Liebeherr, and S. Patek, “A min-plus
calculus for end-to-end statistical service guarantees,”
IEEE TRANSACTION ON INFORMATION
THEORY, vol. 52, pp. 4105–4114, 2006.

[4] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time
calculus for scheduling hard real-time systems,” in in
ISCAS, pp. 101–104, 2000.

[5] Object Management Group, Data Distribution Service
for Real-time Systems Specification, 1.2 ed., Jan. 2007.

[6] Object Computing Incorporated, “OpenDDS.”
http://www.opendds.org, 2007.

[7] M. Carbone and L. Rizzo, “Dummynet revisited,”
SIGCOMM Computer Communication Review, vol. 40,
pp. 12–20, Apr. 2010.


